

Preliminary Product Datasheet

N3838U-VNxx Series High Power UV LED

Introduction

The N3838U-VNxx Series LED from TSLC brings industry leading technology to the UV lighting market with its high reliability and performance. With a ceramic substrate and a 56/40 degree viewing angle primary optic, the N3838U-VNxx is ideal for all UV curing and general UV applications.

Table of Contents

Characteristics	1
Mechanical Dimensions	3
Recommended Solder Pad Design	4
Relative Spectral Power Distribution	5
Typical Spatial Radiation Pattern	5
Typical Forward L-I Characteristics	6
Typical Forward I-V Characteristics	6
Recommended Soldering Profile	7
Thermal Design	8
Packing Information	9

RoHS Compliant

Characteristics

Absolute Maximum Ratings (T_j=25°C)

Devementer	Rating				
Parameter	N3838U-VNxx Series				
DC Forward Current (mA)	500 mA				
LED Junction Temperature	115°C				
LED Operating Temperature	-40°C~85°C				
Storage Temperature	-40°C~125°C				
Soldering Temperature	Max. 260°C / Max. 10sec. (JEDEC 020)				
ESD Sensitivity	2,000 V HBM (JESD-22A-114-B)				
Reverse Voltage	Not designed to be driven in reverse bias (VR \leq 5V)				
Preconditioning	Acc. to JEDEC Level 1				

General Characteristics at 500mA

Part number	Color	Peak Wavelength λp				Thermal Resistance Junction to Pad (°C/W)
		Min	Max		ΔVF /ΔTJ	RΘ _{J-L}
N3838U-VNIx	U2X	365	375	56	-2~-4	4.4
N3838U-VNEx	U2X	365	375	40	-2~-4	4.4

Notes:

- 1. The peak wavelength is measured with an accuracy of ±1nm
- 2. All values stated are subject to the limits and set up of TSLC's testers. All other measurement data are defined as long-term production mean values and are only given for reference.
- 3. A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. Life support devices or systems are intended (i) to be implanted in the human body, or (ii) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Components used as a critical component must be approved in writing by TSLC Corporation.
- 4. These devices emit high intensity UV/NUV light. Necessary precautions must be taken during operation. Do not look directly into the light or look through the optical system when in operation. Protective eyewear should be worn at all times during operation.
- 5. Do not drive at rated current for more than 5 seconds without proper thermal management.
- 6. Always follow thermal design recommendations in the relevant Application Note.
- 7. Lens discoloration may occur with prolonged exposure to UN/NUV light. Additional lens material will need to be tested for UN/NUV light compatibility and durability.

		Performance at Test Current (500mA)					
Part number	Color	Group	Radiometric	Power (mW)	VF		
			Min	Max	Min	Max	
		NF1	600	650	3.4	4.4	
N3838U-VNIx	U2X	NF2	650	700	3.4	4.4	
(beam angle 56°)	(365-375nm)	NF3	700	750	3.4	4.4	
		NF4	750	800	3.4	4.4	
		NE5	560	600	3.4	4.4	
N3838U-VNEx	U2X	NF1	600	650	3.4	4.4	
(beam angle 40°)	(365-375nm)	NF2	650	700	3.4	4.4	
		NF3	700	750	3.4	4.4	

Radiometric Power and Forward Voltage (T_i=25°C)

Note:

1. Radiometric power is measured with an accuracy of $\pm 10\%$

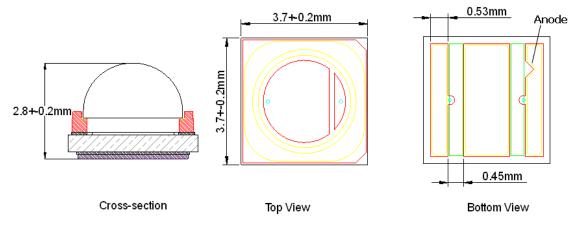
2. The forward voltage is measured with an accuracy of $\pm 0.2V$

* Calculated values are for reference only.

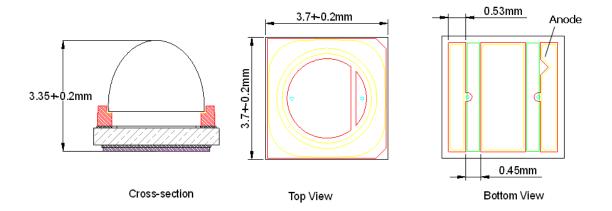
Electrical Characteristics

	Performance at Test Current (500mA)			
Part number	Vf Group	Minimum (V)	Maximum (V)	
N3838U-VNIx (beam angle 56°) N3838U-VNEx (beam angle 40°)	V34	3.4	3.6	
	V36	3.6	3.8	
	V38	3.8	4.0	
	V40	4.0	4.2	
	V42	4.2	4.4	

Note:


- 1. Radiometric power is measured with an accuracy of $\pm 10\%$
- 2. The forward voltage is measured with an accuracy of ±0.1V
- 3. All values stated are subject to the limits and set up of TSLC's testers. All other measurement data are defined as long-term production mean values and are only given for reference.
- 4. A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. Life support devices or systems are intended (i) to be implanted in the human body, or (ii) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Components used as a critical component must be approved in writing by TSLC.
- 5. These devices emit high intensity UV/NUV light. Necessary precautions must be taken during operation. Do not look directly into the light or look through the optical system when in operation. Protective eyewear should be worn at all times during operation.
- 6. Do not drive at rated current for more than 5 seconds without proper thermal management.
- 7. Always follow thermal design recommendations in the relevant Application Note.
- 8. Lens discoloration may occur with prolonged exposure to UN/NUV light. Additional lens material will need to be tested for UN/NUV light compatibility and durability.

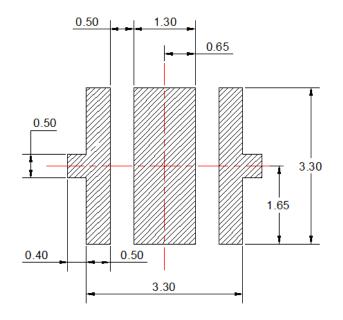
**Calculated values are for reference only.



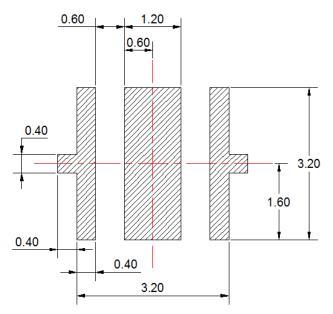
Mechanical Dimensions

N3838U-VNIx (beam angle 56°)

N3838U-VNEx (beam angle 40°)

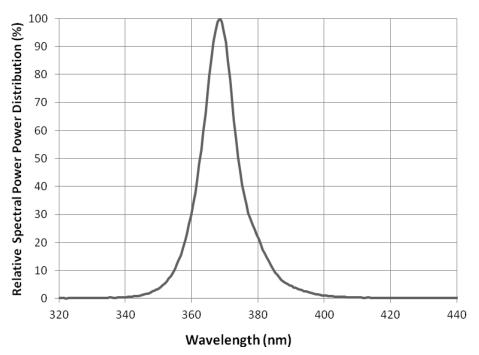

Notes:

- 1. Drawing is not to scale
- 2. All dimensions are in millimetre
- 3. Dimensions are ± 0.13 mm unless otherwise indicated

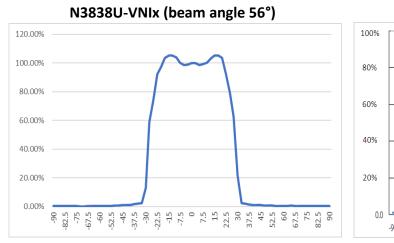


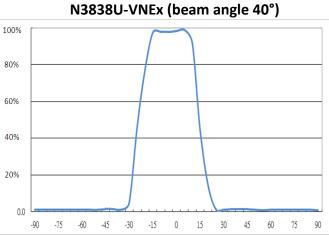
Recommended Solder Pad Design

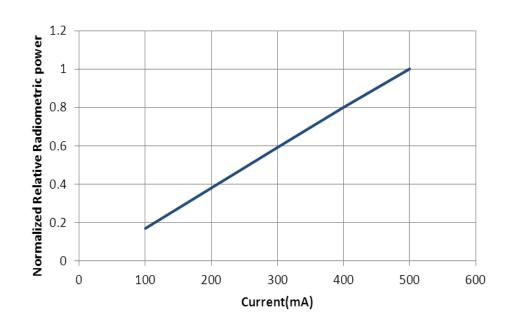
Recommended Soldering Pad Design


Recommended Stencil Pattern Design (Marked Area is Opening)

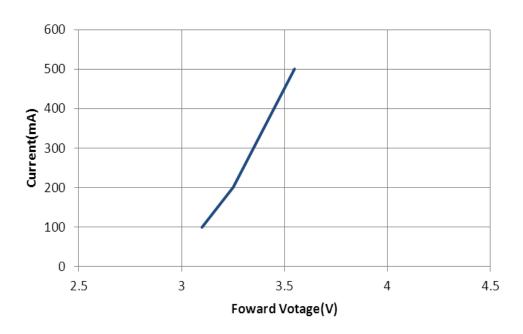
Notes:


- 1. Drawing is not to scale
- 2. All dimensions are in millimeter

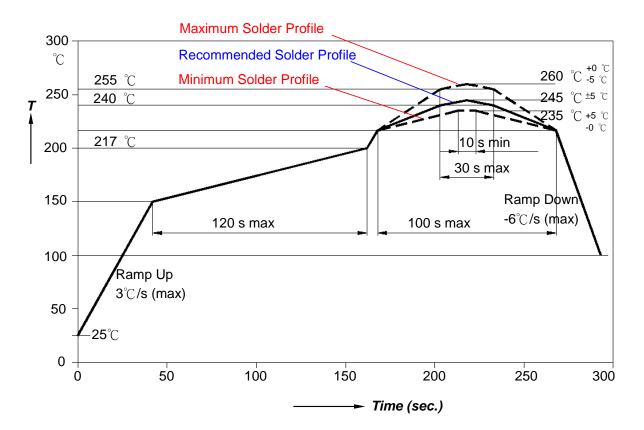



Relative Spectral Power Distribution, T_j=25°C

Typical Spatial Radiation Pattern

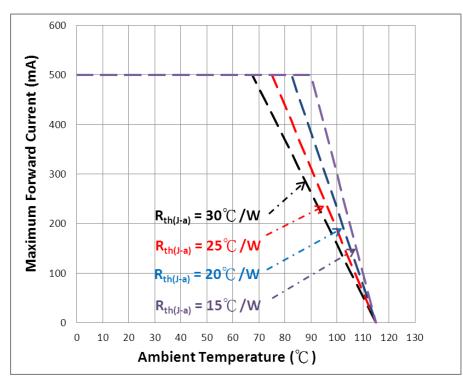


Typical Forward L-I Characteristics, T_j=25°C


Typical Forward I-V Characteristics, T_j=25°C

Recommended Soldering Profile

The LEDs can be soldered using the parameters listed below. As a general guideline, the users are suggested to follow the recommended soldering profile provided by the manufacturer of the solder paste. Although the recommended soldering conditions are specified in the list, reflow soldering at the lowest possible temperature is advised for the LEDs.



Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-up Rate	3°C/second max.	3°C/second max.	
(Ts _{max} to Tp)			
Preheat			
- Temperature Min(Ts _{min})	100°C	150°C	
 Temperature Max(Ts_{max}) 	150°C	200°C	
 Time(ts_{min} to ts_{max}) 	60-120 seconds	60-180 seconds	
Time maintained above:			
 Temperature(T_L) 	183°C	217°C	
- Time(t _L)	60-150 seconds	60-150 seconds	
Peak/classification	215°C	260°C	
Temperature(Tp)			
Time within 5° C of actual Peak	10-30 seconds	20-40 seconds	
Temperature(tp)			
Ramp-Down Rate	6°C/second max.	6°C/second max.	
Time 25 $^{\circ}$ C to Peak Temperature	6 minutes max.	8 minutes max.	

Thermal Design

Thermal design of the end product is important. The thermal resistance between the junction and the solder point $(R\Theta_{J-P})$ and the end product should be designed to minimize the thermal resistance from the solder point to ambient in order to optimize the emitter life and optical characteristics. The maximum operation current is determined by the plot of Allowable Forward Current vs. Ambient Temperature.

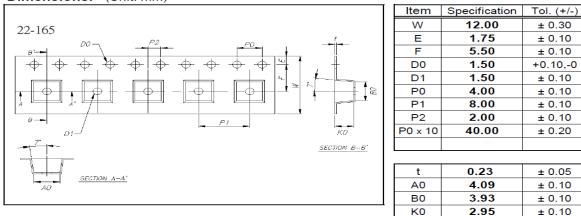
The junction temperature can be correlated to the thermal resistance between the junction and ambient (Rja) by the following equation.

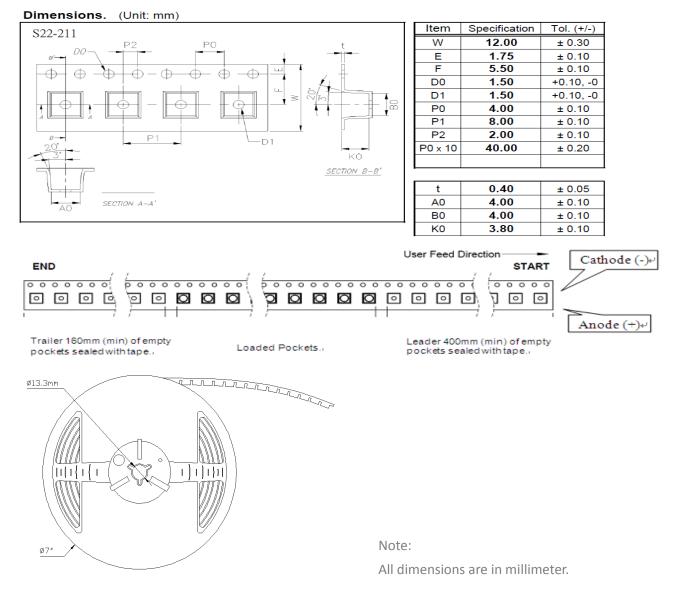
Tj=Ta + Rja*W

Tj: LED junction temperature

Ta: Ambient temperature

Rja: Thermal resistance between the junction and ambient


W: Input power ($I_F * V_F$)


Packing Information

N3838U-VNIx series (beam angle 56°), Max QTY: 500ea / roll

Dimensions. (Unit: mm)

N3838U-VNEx series (beam angle 40°), Max QTY: 500ea / roll

About Us

TSLC Corporation is devoted to developing high-density, and multi-size emitters with powerful output to satisfy the needs of every customer.

TSLC Corporation is the leader in LED solutions. Unlimited design flexibility for interior and exterior spaces with high-end lighting effect; energy-efficient for UV curing to improve the quality of medical care; horticulture solutions create a better environment for everyone; high-intensity rotatable lightings for the entertainment industry, TSLC is always there for your lighting needs.

For further company or product information, please visit us at **www.tslc.com.tw** or please contact **sales@ tslc.com.tw.**

www.tslc.com.tw

ASIA PACIFIC

1F, No. 11, Ke Jung Rd. Chu-Nan Site Hsinchu Science Park Chu-Nan 350, Miao-Li City Taiwan, ROC

> Tel: +886-37-587098 Fax: +886-37-587099 sales@tslc.com.tw

